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Combustion and detailed kinetics

Biofuels
bioalcohols, biodiesel, green 
diesel, bioethers

Pollutant emissions
NOx, SOx, PAHs, soot

Real fuels and surrogates
synergistic effects among the 
different components

Complex phenomena
Chemical instabilities, NTC, etc.

6.5 atm

42 atm

13.5 atm

Experimental data from: 
Ciezki H.K. and Adomeit G., Shock-tube investigation 
of self-ignition of n-heptane-air mixtures under engine 
relevant conditions, Combustion and Flame 93 p. 421–
433 (1993)

Negative temperature 
Coefficients (NTC)
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Operator splitting: transport vs chemistry

Navier-Stokes Eqs. 
(predictor)

Reactor network 
(chemical step)

Properties evaluation

Transport Eqs.
(transport step)

Pressure Eqn.
Velocity correction

(corrector)

𝒕𝒕𝒊𝒊+𝟏𝟏 = 𝒕𝒕𝒊𝒊 + ∆𝒕𝒕

0

20

40

60

80

100

11
species

44
species

224
species

347
species

CP
U

 ti
m

e 
(%

)

Chemical step Transport step + PropertiesPulsating 
laminar coflow

flame

Maximum theoretical 
speed-up: 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =

1
1 − 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 7

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 12

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 20

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 50
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Acceleration of chemical step (I)

Acceleration 
of chemical 

step

Reduction of 
number of cells

Acceleration of 
ODE system 

solution

Local reduction of 
chemical 

complexity

Dynamic Cell Clustering (DCC) 
or Cell Agglomeration (CA)

Sparsity Pattern of Kinetics

In-Situ Adaptive Tabulation 
(ISAT)

ANN + Unsupervised Clustering 

Dynamic Adaptive Chemistry 
(DAC)

Sample-Partitioning Adaptive 
Reduced Chemistry (SPARC)

Chemistry Agglomeration (ChA)

PCA based Cell Agglomeration 
P(CA)2

Optimal choice of ODE solvers

Adapted from:
AC, Machine Learning for data-

based predictive models in 
combustion with detailed kinetics, 

ERCOFTAC Course (2019)
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Acceleration of chemical step (II)

Acceleration 
of chemical 

step

Reduction of 
number of cells

Dynamic Cell Clustering (DCC) 
or Cell Agglomeration (CA)

Local reduction of 
chemical 

complexity

Sample-Partitioning Adaptive 
Reduced Chemistry (SPARC)

Dynamic Adaptive Chemistry 
(DAC)

Chemistry Agglomeration (ChA)

PCA based Cell Agglomeration 
P(CA)2

Adapted from:
AC, Machine Learning for data-

based predictive models in 
combustion with detailed kinetics, 

ERCOFTAC Course (2019)

Sparsity Pattern of Kinetics

In-Situ Adaptive Tabulation 
(ISAT)

ANN + Unsupervised Clustering 

Acceleration of 
ODE system 

solution

Optimal choice of ODE solvers

Surapaneni A., Mira D., Assessment of dynamic adaptive
chemistry with tabulated reactions for the simulation of
unsteady multiregime combustion phenomena,
Combustion and Flame 251:112715 (2023)

Cuoci A., Nobili A., Parente A., Grenga T., H. Pitsch, 
Tabulation-based Sample-Partitioning Adaptive Reduced 
Chemistry and Cell Agglomeration, Submitted to 
Proceedings of The Combustion Institute (2024)

Tabulation-based SPARC-CA
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Outline

1. P(CA)2: PCA-based Cell Agglomeration P(CA)2

• Dynamic Cell Agglomeration and PCA
• Pulsating laminar coflow flame

2. Tabulation-based SPARC-CA
• Temporally-evolving planar jet-flame
• 2D turbulent non-premixed flame including soot chemistry
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Dynamic Cell Agglomeration (DCA)

Dynamic Cell Agglomeration (DCA) dynamically agglomerates regions of the 
domain that have similar thermochemical conditions. 

1. clustering similar cells 
into clusters

2. solving chemical equations 
based on cluster averaged state 

variables

3. mapping the cluster-averaged solution 
back to the individual cells

Liang et al., Combustion Science and 
Technology 181(11), p.1345-1371 (2009)
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Clustering: selection of relevant features

How to define/identify similar thermochemical conditions? 

Selection of features
A natural choice is temperature and a limited 

number of key-species

1. most abundant species are not always the optimal choice

2. slowly-forming pollutants (such as NOx or soot) make the selection of proper 
features more complex

3. it is difficult to identify a priori the optimal subset of species

fuel

OH
CO

T

Problems!
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Dynamic identification of features: PCA

PCA (Principal Component Analysis) to dynamically identify the optimal set of 
relevant features, evolving in time, following the evolution of combustion process

𝐗𝐗 =

𝑇𝑇1 𝑌𝑌1,1
𝑇𝑇2 𝑌𝑌2,1

… 𝑌𝑌1,𝑁𝑁𝑁𝑁
… 𝑌𝑌2,𝑁𝑁𝑁𝑁… ……

𝑇𝑇𝑁𝑁
…
𝑌𝑌𝑁𝑁,1

… ……
…

…
𝑌𝑌𝑁𝑁,𝑁𝑁𝑁𝑁

Current complete 
thermochemical state 

𝑌𝑌𝑖𝑖,𝑗𝑗 =mass fraction of species j in cell i

normalization

Principal 
Components

PCA

Input data matrix:
𝑁𝑁 observations of 𝑁𝑁𝑁𝑁 + 1 variables

𝑁𝑁 = number of cells
𝑁𝑁𝑁𝑁 = number of species

eigenvectors obtained 
from the decomposition 
of the covariance matrix



Cuoci A. – 6th Two-Day Meeting on Propulsion Simulations using OpenFOAM, 11-12 March 202410

P(CA)2: PCA-based Cell Agglomeration

User-defined explained variance 𝑡𝑡𝑞𝑞

Thermochemical state matrix X

PCA

Selection of first 𝐷𝐷 principal 
components explaining variance 𝒕𝒕𝒒𝒒

Cell-Agglomeration algorithm 
(user-defined tolerance 𝝐𝝐)

Transport step

ne
w

 ti
m

e 
le

ve
l

chemical step Clustering and averaging

Time integration of clusters

Remapping composition and 
temperature to original cells

By fixing 𝑡𝑡𝑞𝑞, the number 𝐷𝐷 of principal 
components to be used is automatically 

determined.

F. Perini, R.D. Reitz, Computationally efficient dimension 
reduction of combustion chemistry via Principal Components 

Analysis based domain partitioning, Frontiers in Computational 
Physics: Energy Sciences Zurich, Switzerland June 5, 2015
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Pulsating laminar coflow flame

ISF F3 flames
Internal diameter: 4 mm
Velocities: 35 cm/s
Fuel composition: 80% C2H4 + 20% N2

Artificially imposed sinusoidal 
fluctuations of fuel stream velocity
Amplitude: 90%, Frequency: 10 Hz

Kinetic mechanism
224 species and 5980 reactions
NOx chemistry included
https://creckmodeling.chem.polimi.it

Computational domain
2D region (55 x 120 mm)
~25,000 cells

Solver
laminarSMOKE++ (based on OpenFOAM 10)
https://github.com/acuoci/laminarSMOKE

Temperature NO

300 K 2140 K 0 10-4

mass fraction

Smooke M.D., Long M.B., Connelly B.C., Colket M.B., Hall R.J., 
Combustion and Flame, 143(4), p. 613-628 (2005)

https://creckmodeling.chem.polimi.it/
https://github.com/acuoci/laminarSMOKE
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Example: 𝒕𝒕𝒒𝒒 = 𝟓𝟓𝟓𝟓𝟓 and 𝝐𝝐 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎

Temperature

CO mass fraction

OH mass fraction

NO mass fraction

t=0 t=0.05 s t=0.10 s t=0.15 s t=0.20 s t=0 t=0.05 s t=0.10 s t=0.15 s t=0.20 s

maxmin

Full PCA2

Full PCA2

Full PCA2

Full PCA2

https://www.kaggle.com/datasets/albertocuoci/laminar-coflow-flame-isf-f3a-pulsating

https://www.kaggle.com/datasets/albertocuoci/laminar-coflow-flame-isf-f3a-pulsating
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Global relative error

𝜖𝜖𝐶𝐶𝐶𝐶 = 0.1 𝑡𝑡𝑞𝑞 = 50%

User-defined parameters
1) Explained level of variance: 𝑡𝑡𝑞𝑞
2) CA (Cell Agglomeration) tolerance: 𝜖𝜖𝐶𝐶𝐶𝐶
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Computational performances

𝑡𝑡𝑞𝑞 = 50%

CRECK PAH mechanism (224 species)
Chemistry CPU time: ~95% 

Max theoretical 
overall speed-up

𝑡𝑡𝑞𝑞 = 50%
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Outline

1. P(CA)2: PCA-based Cell Agglomeration P(CA)2

• Dynamic Cell Agglomeration and PCA
• Pulsating laminar coflow flame

2. Tabulation-based SPARC-CA
• Temporally-evolving planar jet-flame
• 2D turbulent non-premixed flame including soot chemistry



Cuoci A. – 6th Two-Day Meeting on Propulsion Simulations using OpenFOAM, 11-12 March 202416

SPARC: Sample-Partitioning Adaptive Reduced Chemistry

Pre-partitioning

The computational overhead needed for the on-the-fly reduction of the 
mechanism can be significant, strongly reducing the efficiency of DAC

• A library of reduced mechanisms is built in a pre-processing step, 
covering the composition space which is expected to be visited by 
the reactive systems of interest. 

• During the CFD simulation, before carrying out the chemical step, 
each cell is classified, i.e., the reduced mechanism available in the 
library is identified “instantaneously” and applied

(Dynamic) Adaptive Reduced Chemistry (ARC)

D.A. Schwer, P. Lu, and W.H. Green, Combustion and Flame, 133(4):451-465, 2003
Y. Liang, S.B. Pope, and P. Pepiot, Combustion and Flame, 162(9), 2015
D’Alessio G., Parente A., Stagni A., Cuoci A., Combustion and Flame, 211, p. 68-82, 2020
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Tabulation-based SPARC-CA: Overall Methodology

1. Pre-processing phase (SPARC)

Dataset 
generation

Partitioning Reduced 
mechanisms

Dataset re-mapping
(or off-line classification)
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Tabulation-based SPARC-CA: Overall Methodology

1. Pre-processing phase (SPARC)

2. CFD simulation phase (CA)

Dataset 
generation

Dataset re-mapping
(or off-line classification)

Partitioning Reduced 
mechanisms

Cell agglomeration (CA) On-the-fly 
classification

Numerical 
integration

Back-mapping

Navier-Stokes Eqs.
(predictor)

Reactor network
(chemical step)

Proper�es evalua�on

Transport Eqs.
(transport step)

Pressure Eqn.
Velocity correc�on

(corrector)

𝒕𝒕𝒊𝒊+𝟏𝟏 = 𝒕𝒕𝒊𝒊 + ∆𝒕𝒕
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Tabulation-based SPARC-CA: Overall Methodology

1. Pre-processing phase (SPARC)

2. CFD simulation phase (CA)

Dataset 
generation

Dataset re-mapping
(or off-line classification)

Partitioning Reduced 
mechanisms

Cell agglomeration (CA) On-the-fly 
classification

Numerical 
integration

Back-mapping

Navier-Stokes Eqs.
(predictor)

Reactor network
(chemical step)

Proper�es evalua�on

Transport Eqs.
(transport step)

Pressure Eqn.
Velocity correc�on

(corrector)

𝒕𝒕𝒊𝒊+𝟏𝟏 = 𝒕𝒕𝒊𝒊 + ∆𝒕𝒕

Cell Agglomeration 
tolerance 𝜖𝜖𝐶𝐶𝐶𝐶

Kinetic Reduction 
tolerance 𝜖𝜖𝐷𝐷𝐷𝐷𝐷𝐷
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Example of training dataset preparation

Dataset generation
the training dataset is constructed from steady and 
unsteady adiabatic diffusion flamelets

Dataset re-mapping
the generated database is re-mapped over two 
control variables, the mixture fraction 𝜉𝜉 and the 
progress variable 𝑌𝑌𝐶𝐶

𝑌𝑌𝐶𝐶 = 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝐶𝐶𝐶𝐶𝐶 + 𝛼𝛼𝐻𝐻2𝑂𝑂𝑋𝑋𝐻𝐻2𝑂𝑂 + 𝛼𝛼𝐶𝐶𝐶𝐶𝑋𝑋𝐶𝐶𝐶𝐶 + ⋯

Adiabatic steady-state 
flamelets

Unsteady 
flamelets

Fuel: C2H4/N2 0.90/0.10

Soot spherical 
particles mass 
fraction

Example of lookup table generated using a detailed kinetic mechanism 
including the soot chemistry via a Discrete Sectional Method (DSM)
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Reduced chemistry library

Generation of reduced mechanisms
For each cluster of the dataset, a reduced
mechanism is generated via the Directed
Relation Graph (DRG) method

Partitioning
A clustering algorithm in the 𝜉𝜉 − 𝑌𝑌𝐶𝐶 space is
adopted to identify continuous regions (i.e.,
clusters) having similar kinetic behavior

Surapaneni A., Mira D., Combustion and Flame 251:112715 (2023)

P. Pepiot-Desjardins, H. Pitsch, Combustion Theory and Modelling 12, 
1089-1108 (2008)

active C10H8

Original mechanism:
226 species, ~10,400 reactions 
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Temporally-evolving planar jet-flame

Hawkes et al., Scalar mixing in direct numerical simulations of temporally evolving plane jet flames 
with skeletal CO/H2 kinetics, Proceedings of the Combustion Insitute, 31, p. 1633-1640 (2007)

2D Mesh
∆x = 30 μm or 45 μm 
Mesh: 548x640 or 365x426
Cells: ~350k or ~156k

Quasi-DNS (3D)
∆x = 90 μm
Mesh: 182 x 214 x 122
Cells: ~4.75M

Kinetic mechanisms
Detailed H2/CO + NOx mechanism by CRECK:
57 species and 385 reactions
https://creckmodeling.chem.polimi.it

Solver
laminarSMOKE++ (based on OF-10)
Time discretization: 2nd order backward Euler
Space discretization: OF cubic schemeH = 1.37 mm U = 276.4 m/s

Re = 9079 Da = 0.011
tj = 4.96 μs Ma = 0.30

https://creckmodeling.chem.polimi.it/
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Global relative error

𝜀𝜀 =
1

𝑁𝑁𝑌𝑌𝑁𝑁𝑇𝑇
�
𝑘𝑘=1

𝑁𝑁𝑇𝑇

�
𝑖𝑖=1

𝑁𝑁𝑌𝑌 𝜓𝜓𝑘𝑘,𝑖𝑖
𝐶𝐶𝐶𝐶 − 𝜓𝜓𝑘𝑘,𝑖𝑖

𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚

𝜓𝜓𝑘𝑘,𝑖𝑖 spatially-averaged fully-resolved solution at y𝑖𝑖 at time 𝑘𝑘

𝜓𝜓𝑘𝑘,𝑖𝑖
𝐶𝐶𝐶𝐶 spatially averaged CA-based solution at y𝑖𝑖 at time 𝑘𝑘

Relevant fields (temperature and mass fractions of 
species) are spatially-averaged over x-z planes 

Fully-resolved 𝜖𝜖𝐷𝐷𝐷𝐷𝐷𝐷 = 0.01

𝜖𝜖𝐶𝐶𝐶𝐶 = 0.025 𝜖𝜖𝐶𝐶𝐶𝐶 = 0.025

𝜖𝜖𝐷𝐷𝐷𝐷𝐷𝐷 = 0.005

reignition
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Computational performances

𝜖𝜖𝐶𝐶𝐶𝐶 = 0.025

CRECK2003-NOX mechanism (57 species)

Chemistry CPU time: 93% 

𝜖𝜖𝐶𝐶𝐶𝐶 = 0.025

𝝐𝝐𝑫𝑫𝑫𝑫𝑫𝑫 𝝐𝝐𝑫𝑫𝑫𝑫𝑫𝑫
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2D turbulent non-premixed flame

Bisetti et al., On the formation and early evolution of soot in turbulent 
nonpremixed flames, Combustion and Flame, 159, p. 317-335 (2012)

Quasi-DNS (2D Mesh)
∆x = 75 μm
Mesh: 400 x 400
Cells: 160k
Simulation time: 30 ms (max Courant number: 0.2)
Boundary conditions: periodic

Kinetic mechanism
CRECK HT-PRF + Soot (Discrete Sectional Method): 
226 (pseudo-)species, ~10,400 reactions 

Numerical details
Solver: laminarSMOKE++ (based on OF-10)
Time discretization: 2nd order backward Euler
Space discretization: OF cubic scheme

Operating conditions
Fuel: 84.4% NC7H16 + 15.6% N2
Oxidizer: 21% O2 + 79% N2
Initial temperature: 300 K
Initial pressure: 1 atm

L=30 mm

L=30 m
m

NC7H16

C10H8 (x1500)

OH (x125) Adiabatic flamelet
@ 10 1/s

Mixture fraction
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Particle Size Distribution (PSD) of soot

t=20 ms

fv = 0.29 ppm
dagg = 26 nm
dsph = 5.5 nm
H/Cagg = 0.19

t=10 ms

fv = 0.018 ppm
dagg = 17 nm
dsph = 5.0 nm
H/Cagg = 0.28

PSD @ max soot volume 
fraction location

t=30 ms

fv = 1.05 ppm
dagg = 75 nm
dsph = 5.5 nm
H/Cagg = 0.10

Sp
he

ric
al

 p
ar

tic
le

s

Aggregates

time
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Computational performances

7e17 #/m3

0

Soot particle 
number density 
@ 15 ms

fully-resolved SPARC-CA solution SPARC-CA solution

𝜖𝜖𝐶𝐶𝐶𝐶 = 0.05
𝜖𝜖𝐷𝐷𝐷𝐷𝐷𝐷 = 0.010A B

PSDF @ 15 ms
(max fv location)

𝜖𝜖𝐶𝐶𝐶𝐶 = 0.05
𝜖𝜖𝐷𝐷𝐷𝐷𝐷𝐷 = 0.005

@ 15 ms

Particle size 
distribution function

B

Total number of clusters: 160k

Max. theoretical speedup: ~20
Average speedup: ~10
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1. Reducing the number of cells: P(CA)2

• Combination of Cell Agglomeration and PCA
• Optimal/automatic choice of features for cell agglomeration

2. … and reducing the kinetic complexity: Tabulation-based 
SPARC-CA

• Combination of Adaptive Reduced Chemistry (ARC) and Cell-Agglomeration
• Chemical reduction as a preprocessing step

Summary
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Thank you!

… and see you in Milan in July 2024!
http://www.combustionsymposia.org/2024/

http://www.combustionsymposia.org/2024/
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Backup slides
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Thank you!
CRECK Modeling Group

Department of Chemistry, Materials 
and Chemical Engineering “G. Natta”

creckmodeling.chem.polimi.it

… and see you in Milan in 2024!
Follow us on Social Media 

@CreckModeling
http://www.combustionsymposia.org/2024/

https://www.facebook.com/CreckModeling
https://www.instagram.com/creckmodeling/
https://twitter.com/crecklab?lang=it
http://www.combustionsymposia.org/2024/
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Available frameworks and codes @ CRECK Lab

OpenSMOKE++
https://www.opensmokepp.polimi.it

Thermodynamics and detailed kinetics
Multicomponent transport properties

ODE solvers for stiff chemistry
Tools for kinetic analysis (ROPA)

 Ideal reactors (batch, PFR, CSTR, shock-tubes, 
RCM)

 Laminar 1D flames (burner stabilized, freely 
propagating, counter-flow flames)

 Isolated fuel droplets
 Steady-state laminar flamelets
 Heterogeneous catalytic ideal reactors (batch, PFR, 

CSTR)

laminarSMOKE++
• CFD of laminar reacting flows (coflow flames, 

burner stabilized stagnation flames, …)

flameletSMOKE++
• Turbulent flames based on the steady-state 

laminar flamelet

edcSMOKE++
• Turbulent flames based on the Eddy Dissipation 

Concept (EDC) model

catalyticFOAM*
• Simulation of catalytic heterogeneous (gas/solid) 

reactorsCuoci A. et al., Computer Physics Communications, 192, pp. 237-264, DOI: 
10.1016/j.cpc.2015.02.014

Cuoci A. et al. (2013) Combustion and Flame, 160 (5), pp. 870-886, DOI: 
10.1016/j.combustflame.2013.01.011 * In cooperation with M. Maestri (POLIMI)

OpenFOAM-based Codes

https://www.opensmokepp.polimi.it/
http://dx.doi.org/10.1016/j.cpc.2015.02.014
http://dx.doi.org/10.1016/j.combustflame.2013.01.011
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CRECK Detailed Mechanisms

SOx

...

nC7-iC8

C6

C3

C2

CH4

CO

H2-O2

NOx

Soot

Oxygenated
species

Kinetic mechanism of pyrolysis, oxidation 
and combustion of small (C1-C3) and large 

hydrocarbons up to Diesel and jet fuels 
(C16) as well as several pollutants

- Hierarchy

- Modularity

- Generality

~ 600 chemical species

~ 20,000 reactions

http://creckmodeling.chem.polimi.it

Frassoldati, A. et al., Combustion and Flame 157(2010), pp. 2-16 [Link]

PAH

Ranzi, E. at al., Progress in Energy and Combustion Science 38 (2012), pp. 468-501 [Link]

CHEMKIN format

http://creckmodeling.chem.polimi.it/
https://www.sciencedirect.com/science/article/pii/S0010218009002508
https://www.sciencedirect.com/science/article/pii/S0360128512000196#!
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Detailed kinetic mechanisms

Adapted from: T.F. Lu, C.K. Law, Toward accommodating 
realistic fuel chemistry in large-scale computations, Progress 

in Energy and Combustion Science, 35, p. 192–215 (2009)

biodiesel (POLIMI)

biodiesel (LLNL)Biodiesel + NOx + soot (POLIMI) need of numerical techniques 
and computational tools to make:

 the use of large kinetic 
mechanisms computationally 
efficient 

 their integration in new and/or 
existing numerical codes as 
smooth as possible
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Detailed chemistry and CFD: challenges

U
ns

te
ad

y 
fla

m
e

Detailed kinetic mechanisms

1. Number of equations
Detailed kinetic mechanisms may involve 
dozens or hundreds of chemical species

2. Non-linearity and coupling
The transport equations of species and energy 
are very non-linear and strongly coupled

3. Stiffness
The characteristic times of species involved in 
a kinetic scheme can differ by several order of 
magnitudes

time [s]

Inlet mixture: C3H8 + Air
Temperature: 1800 K

~ 100 species
~ 1,000 reactions
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Implicit treatment of chemistry via operator-splitting

𝑑𝑑𝐘𝐘
𝑑𝑑𝑡𝑡

= 𝐓𝐓 + 𝐒𝐒

Transport 
(convection + diffusion)

Chemistry 
(reactions)

Transport step (Δ𝑡𝑡)

𝑑𝑑𝐘𝐘
𝑑𝑑𝑑𝑑 = 𝐓𝐓

𝑑𝑑𝐘𝐘
𝑑𝑑𝑑𝑑 = 𝐓𝐓

Chemical step (Δ𝑡𝑡)

�
𝛥𝛥𝐘𝐘1𝑛𝑛 = 𝛥𝛥𝛥𝛥𝐓𝐓𝑛𝑛

𝛥𝛥𝐘𝐘2𝑛𝑛 = 𝛥𝛥𝛥𝛥𝐒𝐒𝑛𝑛

Ren Z., Pope S.B., Second-order splitting schemes for a class of reactive 
systems. Journal of Computational Physics, 227 p. 8165-8176 (2008)

Strang G., On the construction and comparison of difference schemes.
SIAM Journal of Numerical Analysis, 5, p. 506-517 (1968)
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Advertisement

The CRECK Modeling Lab is recruiting PhD 
Students and Postdocs
• Numerical modeling of reactive flows with detailed kinetics
• Development of detailed kinetic mechanisms for pyrolysis, 

oxidation and combustion of gaseous fuels
• Theoretical calculation of rate constants in gas-phase and 

heterogeneous phase
• Modeling of volatilization, gasification and combustion of 

biomasses
• Modeling of thermal conversion (gasification/pyrolysis) of 

plastics
• CFD and compartment-based modeling of bioreactors

We are open to possible collaborations on 
the same topics!

http://creckmodeling.chem.polimi.it

http://creckmodeling.chem.polimi.it/
https://www.linkedin.com/company/creck-modeling/mycompany/
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Implicit treatment of chemistry (II)

Navier-Stokes Eqs. 
(predictor)

Reactor network 
(chemical step)

Properties evaluation

Transport Eqs.
(transport step)

Pressure Eqn.
Velocity correction

(corrector)

𝒕𝒕𝒊𝒊+𝟏𝟏 = 𝒕𝒕𝒊𝒊 + ∆𝒕𝒕

Chemical Step = independent ODE systems
with IC

Implicit ODE solvers are mandatory!

Implicit ODE solvers are computationally very 
expensive

The cost increases more than linearly with the 
number of species 𝑁𝑁𝑆𝑆:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐~𝑁𝑁𝑆𝑆2÷3

Need of acceleration techniques for 
speeding-up the chemical step

Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E., Numerical modeling of laminar flames with detailed 
kinetics based on the operator-splitting method (2013) Energy and Fuels, 27 (12), pp. 7730-7753
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Stiff ODE solvers in OpenFOAM

For each solver, a C++ interface in OpenFOAM was created

ode.SetInitialValues(t0,Y0);
ode.Solve(tf);
ode.Solution(yF);

ODESystem_BatchReactor_DVODE *odeSystemObject;
odeSystemObject = ODESystem_BatchReactor_DVODE::GetInstance();

OpenSMOKE_DVODE<ODESystem_BatchReactor_DVODE>   ode(odeSystemObject);

4. Looping on computational cell

1. Creating ODE System objects

2. Creating ODE System Solver

3. Setting numerical parameters
ode.SetMaximumNumberOfSteps(100000);
ode.SetAnalyticalJacobian(false);
ode.SetAbsoluteTolerance(aTol);
ode.SetRelativeTolerance(rTol);
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Performance of stiff ODE solvers (II)

Homogeneous mechanism
105 species, 1700 reactions

Addition of a heterogeneous mechanism
12 species, 38 reactions

𝑟𝑟𝑗𝑗 = 𝐴𝐴𝑗𝑗 � 𝑇𝑇𝛽𝛽𝑗𝑗 � exp −
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗 𝜃𝜃𝑖𝑖

𝑅𝑅𝑅𝑅
�
𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑐𝑐𝑖𝑖 𝜈𝜈𝑖𝑖𝑖𝑖

Micro-kinetic mechanisms for heterogeneous reactions are usually very non-
linear because the activation energy may depend on the coverage (i.e., the 

composition on the catalytic wall)

fa
ilu

re
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Stiff ODE solvers for chemistry

Language Code available License

OpenSMOKE++ C++ Yes Academic use only

BzzMath C++ No Academic use only

DVODE FORTRAN Yes Free

CVODE C Yes Free

DLSODE FORTRAN Yes Free

DLSODA FORTRAN Yes Free

RADAU5 FORTRAN Yes Free

DASPK FORTRAN Yes Free

MEBDF FORTRAN Yes Free

Most of the CPU 
Time (>90%) is 
spent for the 
numerical 
integration of the 
ODE systems 
corresponding to 
the chemical step0

20

40

60

80

100

Transport Step Chemical Step
Fr

ac
tio

n 
of

 to
ta

l 
CP

U
 ti
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e 

[%
]

Pulsating laminar coflow
flame

Imposed sinusoidal fluctuations 
of fuel stream velocity

Amplitude: 90%
Frequency: 10 Hz



Cuoci A. – 6th Two-Day Meeting on Propulsion Simulations using OpenFOAM, 11-12 March 202443

Performance of stiff ODE solvers

fa
ilu

re

Homogeneous mechanism
19 species, 140 reactions

Homogeneous mechanism
156 species, 5400 reactions

Homogeneous mechanism
680 species, 2400 reactions

The best ODE solver depends on the 
features of the kinetic mechanism adopted:

 number of species
 species/reactions ratio
 lumped reactions

Cuoci A. et al., OpenSMOKE++: An object-oriented framework for the 
numerical modeling of reactive systems with detailed kinetic mechanisms
(2015) Computer Physics Communications, 192, pp. 237-264

fa
ilu

re

fa
ilu

re

fa
ilu

re

Small – weak stiffness Medium – high stiffness

Large –
high 
stiffness
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Sparse linear solvers for detailed chemistry (I)

Jacobian sparsity pattern

LLNL methyl-decanoate
Species: 2878

Reactions: 8555
Non-zero elements: 44620 / 8M (0.50%)

𝑑𝑑𝑌𝑌𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑗𝑗
Stiff ODE 
system

𝐽𝐽𝑖𝑖𝑖𝑖 =
𝑑𝑑𝑆𝑆𝑖𝑖
𝑑𝑑𝑌𝑌𝑗𝑗

Jacobian 
matrix

Implicit 
methods

OpenSMOKE++ ODE solver was extended 
to sparse systems

• EigenSparseLU
• MKL Pardiso
• UMFPACK
• SuperLU (serial)

• BiCGStab
• GMRES
• DGMRES

Direct 
solvers

Iteratives
solvers
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Sparse linear solvers for detailed chemistry (III)

n-heptane Iso-octane Methyl-
decanoate

Species 658 878 2878

Reactions 2827 3769 8555

Non-zero 
elements

13151 18,471 44,620

% sparsity 97% 97.7% 99.5%

Speed-up factors of sparse 
linear solvers with respect 

to the OpenSMOKE++ dense 
solver

The larger the sparsity of a 
kinetic mechanism, the 

larger the speed-up factor in 
using a sparse linear solver
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Sparse linear solvers for detailed chemistry (II)

Polimi-C1C16TOTNOx
466 s – 14,592 r

LLNL-Detailed
654 s – 2,641 r

LLNL-Reduced
160 s – 1,540 r

Lu-88
88 species – 387 reactions

Lu-188
188 s – 939 r

LLNL-MD
2,878 s – 8,565 r

LLNL-C20
7,175 s – 31,669 r

Number of species
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nz = 47138

Polimi-C1C16TOTNOx
466 species
14,592 reactions
Sparsity = 79%

• The sparsity level of a mechanism is 
also a function of the technique 
adopted for its development

• Adoption of sparse algorithms is 
convenient only if the sparsity is 
sufficiently high (>95%)

Sparse 
solvers!



Cuoci A. – 6th Two-Day Meeting on Propulsion Simulations using OpenFOAM, 11-12 March 202447

Analysis of computational costs

The cost for a chemical step in a CFD simulation carried out on a grid with 𝑁𝑁 cells is:

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐~𝑁𝑁 × 𝑁𝑁𝑆𝑆𝛼𝛼 with 𝛼𝛼 = 2 ÷ 3

Under the assumption that 𝑁𝑁 ≫ 𝑁𝑁𝑆𝑆, it is possible to demonstrate that the cost of PCA 
scales as:

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃~𝑁𝑁 × 𝑁𝑁𝑆𝑆2

Thus, the relative cost of PCA with respect to the chemical step does not increase with 
the size of the mesh and it is expected to slightly decrease with the number of species:

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐

~
1

𝑁𝑁𝑆𝑆𝛼𝛼−2
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Dynamic Cell Agglomeration (DCA)

The grouping of computational cells, in 
the calculation domain, into clusters is 

achieved by using clustering algorithms
which identify cells that have similar 

thermochemical states. 

How to conservatively redistribute the 
species among the cells, after integration?

On which basis can reacting cells be 
regarded as similar or different?

Liang L., Stevens J. G., Farrell J.T., A Dynamic Multi-Zone 
Partitioning Scheme for Solving Detailed Chemical 

Kinetics in Reactive Flow Computations, Combustion 
Science and Technology 181(11), p.1345-1371 (2009)

G.M. Goldin, Z. Ren, S. Zahirovic, A cell agglomeration 
algorithm for accelerating detailed chemistry in CDF, 

Combust. Theory Model., 13, pp. 721–739 (2009)

Clustering algorithms
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Conservative remapping procedure

A simple, weighted remapping of the species mass fractions changes from the cluster is 
not able to ensure mass conservation and it would gradually deteriorate the solution. 

Mass fraction change in cluster 𝑘𝑘
(over time step Δ𝑡𝑡 = 𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛)

Δ𝑌𝑌𝑘𝑘,𝑗𝑗 = 𝑌𝑌𝑘𝑘,𝑗𝑗
𝑛𝑛+1 − 𝑌𝑌𝑘𝑘,𝑗𝑗

𝑛𝑛

𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛+1 = 𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛 +
Δ𝑌𝑌𝑘𝑘,𝑗𝑗 𝜌𝜌𝑖𝑖𝑛𝑛 𝑖𝑖𝑖𝑖 Δ𝑌𝑌𝑘𝑘,𝑗𝑗 ≥ 0

Δ𝑌𝑌𝑘𝑘,𝑗𝑗 𝜌𝜌𝑘𝑘𝑛𝑛
𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛

𝜌𝜌𝑘𝑘,𝑗𝑗
𝑛𝑛 𝑖𝑖𝑖𝑖 Δ𝑌𝑌𝑘𝑘,𝑗𝑗 < 0

Change of species partial density
to be mapped back to the original cells 𝑖𝑖

Liang L., Stevens J. G., Farrell J.T., A Dynamic Multi-
Zone Partitioning Scheme for Solving Detailed 
Chemical Kinetics in Reactive Flow Computations, 
Combustion Science and Technology 181(11), p.1345-
1371 (2009)

The cells’ temperatures are 
estimated from the updated 
mixture sensible enthalpy.
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Linearized solution remapping (I)

𝐘𝐘𝑐𝑐 𝐘𝐘3

𝐘𝐘2
𝐘𝐘1

𝐑𝐑(𝐘𝐘1) 𝐑𝐑(𝐘𝐘2)

𝐑𝐑(𝐘𝐘3)
𝐑𝐑(𝐘𝐘𝑐𝑐)

cluster @ tn

cluster @ tn+∆t

Integration 
over ∆t

Chemical step: ODE integration

𝐑𝐑 𝐘𝐘𝑗𝑗 = �
𝑡𝑡𝑛𝑛

𝑡𝑡𝑛𝑛+Δ𝑡𝑡
𝐟𝐟 𝐘𝐘𝑗𝑗 ,𝐘𝐘, 𝑡𝑡 𝑑𝑑𝑑𝑑

𝐘𝐘𝑐𝑐

𝐑𝐑(𝐘𝐘𝑐𝑐)

𝐑𝐑 𝐘𝐘𝑗𝑗 = 𝐑𝐑 𝐘𝐘𝑐𝑐 + 𝛅𝛅𝐑𝐑 𝐘𝐘𝑐𝑐 ,𝛅𝛅𝛅𝛅

𝐘𝐘𝑗𝑗 = 𝐘𝐘𝑐𝑐 + δ𝐘𝐘

𝛅𝛅𝐑𝐑 𝐘𝐘𝑐𝑐 ,𝛅𝛅𝛅𝛅

𝐑𝐑 𝐘𝐘𝑗𝑗 ≈ 𝐑𝐑 𝐘𝐘𝑐𝑐 + �
𝜕𝜕𝑅𝑅𝑖𝑖

𝜕𝜕𝑌𝑌𝑘𝑘
𝐘𝐘𝑐𝑐

𝛅𝛅𝛅𝛅 = 𝐑𝐑 𝐘𝐘𝑐𝑐 + 𝐒𝐒 � 𝛅𝛅𝛅𝛅

If 𝛅𝛅𝛅𝛅 is small enough:

𝑆𝑆𝑖𝑖𝑖𝑖 = �
𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝑌𝑌𝑘𝑘 𝐘𝐘𝑐𝑐

Matrix of linearized 
mapping gradients

Pope S.B., “Combustion Theory and Modelling, 1 (1997) 41-63 

𝐘𝐘𝑗𝑗 = [𝑋𝑋𝑗𝑗1, … ,𝑋𝑋𝑗𝑗𝑁𝑁𝑁𝑁 ,𝑇𝑇𝑗𝑗]
Thermochemical state of cell j
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Linearized solution remapping (II)

The linear mapping gradients are the first-order sensitivities of the ODE system w.r.t. the initial 
conditions evaluated at the final integration time: 

𝑑𝑑𝐒𝐒
𝑑𝑑𝑑𝑑

= 𝐉𝐉 𝑡𝑡,𝐘𝐘 � 𝐒𝐒 𝑡𝑡,𝐘𝐘

𝐒𝐒 𝑡𝑡,𝐘𝐘𝑐𝑐 = 𝐈𝐈

• Dense, stiff ODE system with 𝑁𝑁𝑆𝑆2 equations
• Computationally too expensive to be 

solved on-the-fly

𝐑𝐑 𝐘𝐘𝑗𝑗 ≈ 𝐑𝐑 𝐘𝐘𝑐𝑐 + �
𝜕𝜕𝑅𝑅𝑖𝑖

𝜕𝜕𝑌𝑌𝑘𝑘
𝐘𝐘𝑐𝑐

𝛅𝛅𝛅𝛅 = 𝐑𝐑 𝐘𝐘𝑐𝑐 + 𝐒𝐒 � 𝛅𝛅𝛅𝛅 F. Perini, R.D. Reitz, Frontiers in Computational Physics: Energy 
Sciences Zurich, Switzerland June 5, 2015

Linearized solution mapping in the PC space (i.e., reduced sensitivity system): 

𝐑𝐑 𝐩𝐩𝑗𝑗 ≈ 𝐑𝐑 𝐩𝐩𝑐𝑐 + �
𝜕𝜕𝑅𝑅𝑖𝑖

𝜕𝜕𝑝𝑝𝑘𝑘
𝐩𝐩𝑐𝑐

𝛅𝛅𝒑𝒑 = 𝐑𝐑 𝑝𝑝𝑐𝑐 + �𝐒𝐒 � 𝛅𝛅𝐩𝐩

𝑆̃𝑆𝑖𝑖𝑖𝑖 = �
𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝑝𝑝𝑘𝑘 𝐩𝐩𝑐𝑐

Matrix of linearized 
mapping gradients

only 𝑁𝑁𝑃𝑃𝑃𝑃2 elements
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Dynamic Multi-Zone (DMZ) clustering

As opposed to static algorithms such as a basic k-means algorithm, the DMZ algorithm 
(Liang 2009) does not require the a priori specification of the number of zones.

the algorithm starts by initializing 
all the cells as 1 big zone

the algorithm terminates 
when the dispersion 

metrics become smaller 
than user-specified 

tolerance 𝝐𝝐 in all zones. 

the number of zones evolves as bigger zones are split into 
smaller ones via a bisection-splitting algorithm
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Dynamic Multi-Zone (DMZ) partitioning (I) 

Cluster C1 C2

CK

C3

Pattern 𝒙𝒙𝒋𝒋 (or 
feature vector)

𝒙𝒙𝒋𝒋 = 𝑥𝑥𝑗𝑗𝑗,𝑥𝑥𝑗𝑗𝑗, … , 𝑥𝑥𝑗𝑗𝐷𝐷

D is the number of features (i.e
principal components) on which the 
clustering is applied

nk is the number of patterns in cluster k

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑑𝑑) 𝑥𝑥𝑖𝑖
(𝑑𝑑), 𝑥𝑥𝑖𝑖

(𝑑𝑑) = 𝑥𝑥𝑖𝑖
(𝑑𝑑) − 𝑥𝑥𝑖𝑖

(𝑑𝑑)

𝜎𝜎𝑘𝑘
(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑑𝑑) 𝑥𝑥𝑖𝑖

(𝑑𝑑), 𝑥𝑥𝑖𝑖
(𝑑𝑑)

Clustering in each dimension d is terminated when the dispersion  becomes smaller than 
the user-specified tolerance 𝜖𝜖(𝑑𝑑) in all clusters and in all dimensions:

𝜎𝜎𝑘𝑘
(𝑑𝑑) < 𝜖𝜖(𝑑𝑑)

Distance between the 𝑑𝑑𝑡𝑡𝑡 feature

Dispersion of feature 𝑑𝑑 in cluster 𝐶𝐶𝐾𝐾

𝑐𝑐𝑘𝑘 =
1
𝑛𝑛𝑘𝑘

�
𝑖𝑖=1

𝑛𝑛𝑘𝑘

𝒙𝒙𝒋𝒋 Center of a cluster
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Dynamic Multi-Zone (DMZ) partitioning (II) 
Start from one big 

cluster K(0)

d=1

d<D?

initialize current clusters N(d)=K(d-1)

i=1

Finalize

i<N(d)? Sum up clusters K(d)

d++

k=1

initialize patterns

k<K(d) 𝜎𝜎𝑘𝑘
(𝑑𝑑) < 𝜀𝜀(𝑑𝑑) Split cluster via 

bisection

K++
k-means

i++

New 
cluster?

false

true

true

true

truetrue

false

false

false false

at stage 𝑑𝑑, each of the 
𝐾𝐾(𝑑𝑑 − 1) clusters generated 
from stage 𝑑𝑑 − 1 is treated 

as a new clustering task, and 
each task independently 

breaks down a stage 𝑑𝑑 − 1
cluster into smaller ones 
until all newly generated 

clusters satisfy the 
termination criterion defined 

by the 𝑑𝑑 feature
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Unsupervised classification: k-means

Initialize K clusters 
and their centers

Centers 
change?

Assign each pattern 
to the closest 
cluster center

Update the center 
of each cluster

One of the major problems of data clustering via k-means is 
represented by the estimation of the optimal number of 
clusters K

Typically, the k-means clustering algorithm is repeated at 
increasing number of partition clusters K, and that is stopped 
after that the desired partition quality has been 
reached. This process of course is very computationally 
expensive

Choose K Desired 
quality?

yes

no

no

yes
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Impact of user-defined tolerance 𝝐𝝐

𝜖𝜖 = 0.100

𝜖𝜖 = 0.040

𝜖𝜖 = 0.020

𝜖𝜖 = 0.010

𝑡𝑡𝑞𝑞 = 50%

Number of clusters as a 
function of the user-defined 

clustering tolerance 𝜖𝜖
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Conventional Cell Agglomeration

D=2: T, N2

D=3: T, N2, O2

D=4: T, N2, O2, C2H4

D=5: T, N2, O2, C2H4, CO2

D=6: T, N2, O2, C2H4, CO2, H2O

D=2: T, CO

D=3: T, CO, NO
𝜖𝜖 = 0.100

• the results are very sensitive to the choice of the 𝐷𝐷 − 1 species

• the overall error is systematically larger than the corresponding P(CA)2

simulation carried out with the same values of 𝐷𝐷 and 𝜖𝜖
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Computational performances (I)

• The PCA computational time does not depend on 
the clustering parameters 𝑡𝑡𝑞𝑞 and 𝜖𝜖

• The clustering time is negligible

𝑡𝑡𝑞𝑞 = 50%

• As expected, the overall computational cost 
of the CA-based simulation decreases 
monotonically with increasing tolerances.

• The saving in CPU time impacts the chemical 
step only

Max theoretical 
overall speed-up

𝑡𝑡𝑞𝑞 = 50%
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Computational Performances

Max theoretical 
overall speed-up

𝑡𝑡𝑞𝑞 = 50%

𝑡𝑡𝑞𝑞 = 50%
• By increasing 𝑡𝑡𝑞𝑞 and/or decreasing the 

tolerance 𝜀𝜀, the accuracy of the CA-
based simulation increases 
monotonically

• Also in this case, the cost associated 
with the clustering algorithm is 
negligible, despite the higher number of 
species. 

• As expected, the cost of the PCA step 
(~10 s) increases in terms of absolute 
values, but it is still only ∼2% of the 
computational time of the original 
chemical step (~520 s). 

Kinetic mechanism
224 species and 5939 reactions
PAH chemistry included 
(up 2 aromatic rings)
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Analysis of computational time
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Hawkes (2007) mechanism (11 species) CRECK2003NOX mechanism (57 species)
Chemistry CPU time: 86% Chemistry CPU time: 95% 

𝑡𝑡𝑞𝑞 = 80%

𝑡𝑡𝑞𝑞 = 80% 𝑡𝑡𝑞𝑞 = 80%

𝑡𝑡𝑞𝑞 = 80%
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Impact of user-defined explained variance 𝒕𝒕𝒒𝒒

Temporal evolution of cosine values of 
the angles between the first 2 principal 
axes and species CO and NO𝑡𝑡𝑞𝑞 = 50%

𝜖𝜖 = 0.010

Number of clusters as a function 
of the user-defined explained 

variance 𝑡𝑡𝑞𝑞

𝑡𝑡𝑞𝑞

𝜖𝜖 = 0.100
𝑡𝑡𝑞𝑞 = 50%

𝑡𝑡𝑞𝑞 = 90%
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Computational times: impact of 𝒕𝒕𝒒𝒒

Max theoretical 
overall speed-up

𝑡𝑡𝑞𝑞 = 50%

• By increasing the number of features D 
and/or decreasing the tolerance ε, the 
accuracy of the CA-based simulation 
increases monotonically

• Also in this case, the cost associated 
with the clustering algorithm is 
negligible, despite the higher number of 
species. 

• As expected, the cost of the PCA step 
(~10 s) increases in terms of absolute 
values, but it is still only ∼2% of the 
computational time of the original 
chemical step (~520 s). 

𝜖𝜖 = 0.100

𝜖𝜖 = 0.100
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Computational times: impact of 𝒕𝒕𝒒𝒒

• The PCA computational time does not depend on 
the clustering parameters 𝑡𝑡𝑞𝑞 and 𝜖𝜖

• The clustering time weakly increases with the 
increasing number of features, but it is basically 
negligible

𝜖𝜖 = 0.100

• As expected, the overall computational cost 
of the CA-based simulation decreases 
monotonically with increasing tolerances.

• The saving in CPU time impacts the chemical 
step only

Max theoretical 
overall speed-up

𝜖𝜖 = 0.100
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Detailed mechanism including PAHs

ISF F3 flames
Internal diameter: 4 mm
Velocities: 35 cm/s
Fuel composition: 80% C2H4 + 20% N2

Artificially imposed sinusoidal 
fluctuations of fuel stream velocity
Amplitude: 90%
Frequency: 10 Hz

Kinetic mechanism
224 species and 5939 reactions
PAH chemistry included 
(up 2 aromatic rings)

Computational domain
2D region (55 x 120 mm)
~25,000 cells

𝑡𝑡𝑞𝑞 = 50%

𝑡𝑡𝑞𝑞 = 50%
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Global relative error

Global relative 
error

𝜀𝜀 =
1

𝑁𝑁𝐶𝐶𝑁𝑁𝑇𝑇
�
𝑘𝑘=1

𝑁𝑁𝑇𝑇

�
𝑖𝑖=1

𝑁𝑁𝐶𝐶 𝜓𝜓𝑘𝑘,𝑖𝑖
𝐶𝐶𝐶𝐶 − 𝜓𝜓𝑘𝑘,𝑖𝑖

𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚

𝜓𝜓𝑘𝑘,𝑖𝑖 fully-resolved solution in cell 𝑖𝑖 at time 𝑘𝑘

𝜓𝜓𝑘𝑘,𝑖𝑖
𝐶𝐶𝐶𝐶 CA-based solution in cell 𝑖𝑖 at time 𝑘𝑘

𝜖𝜖 = 0.100

𝑡𝑡𝑞𝑞 = 50%
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Temporally-evolving planar jet-flame

Hawkes et al., Scalar mixing in direct numerical simulations of temporally evolving plane jet flames 
with skeletal CO/H2 kinetics, Proceedings of the Combustion Insitute, 31, p. 1633-1640 (2007)

Flame H
H = 1.37 mm
Re = 9079
tj = 4.96 μs
U = 276.4 m/s
Da = 0.011
Ma = 0.30

Quasi-DNS
∆x = 45 μm
Mesh: 365 x 426 x 243
Cells: ~37.8M

Solver
laminarSMOKE++ (based on OF-9)
https://github.com/acuoci/laminarSMOKE
Time discretization: implicit 2nd order 
backward Euler
Space discretization: OF cubic scheme

https://github.com/acuoci/laminarSMOKE
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Sensitivity analyses: 2D simulations

0 0.0057

500 K 1850 K

Temperature

OH mass fraction

t/tj = 5 t/tj = 10 t/tj = 15

t/tj = 5 t/tj = 10 t/tj = 15

Sensitivity analysis to PCA2 parameters were 
carried out on 2D cases
- explained variance
- clustering tolerances

2D Mesh
∆x = 30 μm or 45 μm 
Mesh: 548x640 or 365x426
Cells: ~350k or ~156k

Kinetic mechanisms
- Skeletal H2/CO mechanism by Hawkes et al. 

(2007): 11 species and 21 reactions
- Detailed H2/CO + NOx mechanism by CRECK

Modeling Lab: 57 species and 385 reactions
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Comparison 2D vs 3D

t/tj = 20

t/tj = 20

Stanley et al. (1998)

2D and 3D flows are qualitatively very different
- 2D jets are dominated by a large vortex dipole 

instability, which does not occur in 3D
- in 2D, large coherent structures
- in 2D, over-prediction of extinguished states
- in 3D, more small-scale structures
- In 3D, high-dissipation structures are more transient

t/tj = 20

0 1500 K 1900 K

temperature mixture fraction
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Principal Component Analysis

State variable
Rows represent 
observations and columns 
correspond to the problem 
variables (T, and species 
mass fraction). 

𝐒𝐒 = 𝐗𝐗𝐓𝐓𝐗𝐗 𝐒𝐒 = 𝐀𝐀𝐀𝐀𝐀𝐀𝐓𝐓

Covariance 
matrix

PC (Principal Components): eigenvectors of S, i.e. the columns of A
Eigenvalues: i.e. the diagonal of the L matrix, the portion of variance they account for.
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Local PCA

Problem
Because PCA is a linear combination of basis function, for highly non-linear 
systems such as combustion applications, a large number of PCs is required 
to describe the problem properly.

Solution
With a local formulation of PCA (LPCA) we overcome this problem. 

The LPCA finds clusters of data 
which are characterized by 
similar properties, In each 
cluster PCA is performed, and 
a set of local PCs is found
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Partitioning via LPCA and k-means

1. Initialization
The initial clusters centroids are chosen from a 
k-means solution. The eigenvector matrix in 
each cluster is initialized as the identity matrix.

2. Partition
Each observation is assigned to a cluster by 
means of the calculation of a reconstruction 
error.

3. Update
The cluster centroids are updated on the basis 
of the partitioning carried out at step 2.

4. Local-PCA
LPCA is performed in each cluster found at 
step 2.

normalized root mean 
squared error
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Unsteady flame: new conditions (II)

The average number of active species and 
reactions change in time because of the 
flame evolution

The active species and active reactions 
are strictly correlated

The CPU time is strongly dependent on 
the number of species
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Scaling criterion of training data

The scaling criterion has a reduced effect on the chemical reduction and consequently on 
the adaptive simulation accuracy 

𝜺𝜺𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒏𝒏𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒏𝒏𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎 𝝀𝝀𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
AUTO 43 50 0.071

PARETO 41 51 0.070

VAST 43 52 0.074

RANGE 40 48 0.074
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On-the-fly classification via ANN (II)

Hidden 
layer

Hidden 
layer

Thermochemical 
variables

PCA

input

main PCs

Scaled variables

scaling

group 
number

(probability)

ANN

The ANN solves a multi-class classification problem 

D’Alessio G., Cuoci A., Parente A., Feature extraction and artificial neural networks for the on-the-fly classification of high-dimensional thermochemical 
spaces in adaptive-chemistry simulations, Data-Centric Engineering (2020)  
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A test case: steady-state laminar coflow flame

fuel
air

Fuel stream
Composition:34% C2H4, 66% N2
Velocity: 35 cm/s (parabolic)

Oxidizer stream
Composition: 21% O2, 79% N2
Velocity: 35 cm/s (flat)

Geometry
Fuel nozzle diameter: 4 mm
Thickness: 0.38 mm
Coflow diameter: 50 mm

R.K. Mohammed, et al., Computational 
and experimental study of a forced, 
time-varying, axisymmetric, laminar 
diffusion flame, Symposium 
(International) on Combustion, 
27(1):693-702, 1998.

Numerical simulation

Axisymmetric 2D Mesh
Domain: 54 x 120 mm
Cells: ~25,000

Kinetic mechanism
POLIMI_C1C3_HT_1412
84 species and 1698 reactions

CFD code
laminarSMOKE (based on the 
operator splitting approach)



Cuoci A. – 6th Two-Day Meeting on Propulsion Simulations using OpenFOAM, 11-12 March 202476

Generation of training dataset

The dataset was created by introducing a perturbation in 
the fuel inlet velocity, according to a sinusoidal function 
with prescribed amplitude A and frequency f

time

Ve
lo

ci
ty

 [c
m

/s
]

𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠 1 + 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 2𝜋𝜋𝑓𝑓𝑡𝑡

Dataset: f10A25
A dataset with ~130,000 
observations was created by 
imposing a frequency of 10 Hz 
and an amplitude of 0.25

https://www.kaggle.com/datasets/albertocuoci/laminar-coflow-flame-drm19-ch4n2-6535

https://www.kaggle.com/datasets/albertocuoci/laminar-coflow-flame-drm19-ch4n2-6535
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Reduction of kinetics: DRG-EP

DRG-EP is applied in each cluster to generate the 
reduced mechanisms.

• For each sample point a reduced mechanism 
was generated. A single reduced mechanism 
for each cluster was created as the union of 
species and reactions corresponding to the 
individual reduced mechanisms of each 
sample point for that cluster. 

• Fuel and oxidizer were assumed as target 
species for DRG-EP, and several tolerance 
thresholds 𝜀𝜀 were tested (0.005 to 0.1)

P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagation-based reduction method for 
large chemical kinetic mechanisms, Combustion Theory and Modelling 12 (2008) 1089–1108
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A priori analysis of partitioning

𝜺𝜺𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒏𝒏𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒏𝒏𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎 𝝀𝝀𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
0.030 31 38 0.080

0.020 34 42 0.079

0.010 39 44 0.075

0.005 43 50 0.071

Dissimilarity coefficient 𝜆𝜆 =
1
𝑛𝑛𝑠𝑠𝑠𝑠

�
𝑖𝑖=1

𝑛𝑛𝑠𝑠𝑠𝑠

1 − 𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 =
1

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜
�
𝑗𝑗=1

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜

𝛿𝛿𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖𝑖𝑖 = �
1

0

If species 𝑖𝑖 is included in reaction mechanism generated 
by observation j

otherwise

Good partitioning: 𝜆𝜆 → 0
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A posteriori analysis of partitioning

1. Steady-state flame

2. Unsteady flame: f=10Hz, A=025

3. Unsteady flames: f=10, 40, 80 Hz, A = 0.50, 0.75, 0.90

Same data used for training
(Testing purposes only)

! Exploration of new conditions not included in the training dataset
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Results: steady-state flame

𝜺𝜺 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝜺𝜺 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝜺𝜺 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝜺𝜺 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎

𝜀𝜀 = 0.005

𝜀𝜀 = 0.005

𝜀𝜀 = 0.005

𝜺𝜺𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 Speed-up
0.030 5.4
0.020 4.9
0.010 4.6
0.005 4.0
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Results: unsteady flames

t= 𝟏𝟏𝟏𝟏𝒎𝒎𝒎𝒎 t= 𝟐𝟐𝟐𝟐𝒎𝒎𝒎𝒎 t= 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎 t= 𝟕𝟕𝟕𝟕𝒎𝒎𝒎𝒎

Same training dataset
f10A25
𝜀𝜀 = 0.005

New conditions
f = 20 Hz
A = 0.25

𝑡𝑡 = 45 𝑚𝑚𝑚𝑚

𝑡𝑡 = 45 𝑚𝑚𝑚𝑚
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Results: average errors

• The ANN used for the classification 
consisted of 2 hidden layers with 
200 and 400 neurons, respectively, 
chosen after an optimization of the 
hyper-parameters to achieve a 
satisfactory accuracy in the class 
prediction. 

• The activation functions chosen for 
the hidden layers were both ReLU
(Rectified Linear Unit), with a 
softmax activation for the output 
layer as required in case of multi-
class classification tasks. 

Averaged normalized root mean square 
error over time 

𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0.005
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SPARC: Sample-Partitioning Adaptive Reduced Chemistry
Tr
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D’Alessio G., Parente A., Stagni A., Cuoci A., Adaptive chemistry via pre-partitioning of 
composition space and mechanism reduction, Combustion and Flame, 211, p. 68-82 (2020)

1
• Data generation

2
• Clustering based on similarity of 

thermochemical state

3
• Generation of reduced kinetic 

mechanisms via DRG-EP

4
• CFD simulation based on reduced 

mechanisms
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SPARC: Sample-Partitioning Adaptive Reduced Chemistry

1
• Data generation

2
• Clustering based on similarity of 

thermochemical state

3
• Generation of reduced kinetic 

mechanisms via DRG-EP

4
• CFD simulation based on reduced 

mechanisms

Tr
ai

ni
ng

 p
ha

se
Si

m
ul

at
io

n

Supervised/Unsupervised 
clustering

Choice of a proper training 
dataset is the most important 
step!

Fast on-the-fly classification 
is required

Reduction is done off-line, so 
more advanced (expensive) 
techniques can be used

D’Alessio G., Parente A., Stagni A., Cuoci A., Adaptive chemistry via pre-partitioning of 
composition space and mechanism reduction, Combustion and Flame, 211, p. 68-82 (2020)

Supervised/Unsupervised 
clustering

Fast on-the-fly classification 
is required



Cuoci A. – 6th Two-Day Meeting on Propulsion Simulations using OpenFOAM, 11-12 March 202485

A test case: nC7H16/CH4/N2 laminar flame

fuel
air

Fuel stream
Composition: 2.47% nC7H16, 
48.7% CH4, 48.7% N2
Velocity: 10.12 cm/s (parabolic)

Oxidizer stream
Composition: 21% O2, 79% N2
Velocity: 12.32 cm/s (flat)

Geometry
Fuel nozzle diameter: 11 mm
Thickness: 0.90 mm
Coflow diameter: 50 mm

M. Kashif et al., Sooting propensities of some gasoline surrogate fuels: Combined effects of fuel 
blending and air vitiation, Combustion and Flame, 162(5):1840–1847, 2015

Axisymmetric 2D Mesh
Domain: 40 x 100 mm
Cells: ~10,000

Kinetic mechanism
POLIMI_PRF_PAH_HT_1412
176 species and 6067 reactions

CFD code
laminarSMOKE (based on the 
operator splitting approach)
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Generated of training dataset

• The generated data set must cover 
adequately the composition space that 
is expected to be visited during the 
simulation of the system under 
investigation

• The samples were generated by means 
of 1D counterflow diffusion flames 
(CFDF), adopting a wide range of strain 
rates randomly chosen from 15 to 
1000 1/s (i.e., from thermodynamic 
equilibrium to extinction)

• The resulting data set consists of about 
220,000 observations, corresponding 
to ~100 different CFDF flames.
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On-the-fly classification via ANN

• If the chemical mechanism 
consists of a large number of 
species, the classification can be 
a difficult task to accomplish 
since the use of distances in 
high-dimensional spaces can 
sometimes lead to poor results
(Aggarwal, 2001)

• ANN represent a valid alternative 
to improve the classification 
efficiency, as they do not rely on 
the use of the metrics in high-
dimensional spaces

Dataset generation

Unsupervised 
Classification

Reduced mechanism 
library

CFD simulation

Abstract problem 
(0D, 1D)

Off-line 
classification via 

LPCA

DRGEP

On-the-fly 
classification

D’Alessio G., Cuoci A., Parente A., Feature extraction and 
artificial neural networks for the on-the-fly classification of high-
dimensional thermochemical spaces in adaptive-chemistry 
simulations, Data-Centric Engineering (2020)  
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On-the-fly classification via ANN

• If the chemical mechanism 
consists of a large number of 
species, the classification can be 
a difficult task to accomplish 
since the use of distances in 
high-dimensional spaces can 
sometimes lead to poor results
(Aggarwal, 2001)

• ANN represent a valid alternative 
to improve the classification 
efficiency, as they do not rely on 
the use of the metrics in high-
dimensional spaces

Dataset generation

Unsupervised 
Classification

Reduced mechanism 
library

CFD simulation

Abstract problem 
(0D, 1D)

Off-line 
classification via 

LPCA

DRGEP

On-the-fly 
classification

via ANN

D’Alessio G., Cuoci A., Parente A., Feature extraction and 
artificial neural networks for the on-the-fly classification of high-
dimensional thermochemical spaces in adaptive-chemistry 
simulations, Data-Centric Engineering (2020)  

ANN Training

ANN classifier 
(offline training)
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Results: comparison with full-chemistry

C3H3 mass fraction
@ t=30 ms

C6H6 mass fraction
@ t=30 ms

BIN1B (C20) is the heaviest 
species in the mechanism, and it 

is a soot precursor

A satisfactory level of agreement is observed not only for main species, but also for radicals (such as 
propargyl) and heavy species (such as benzene and soot precursors).
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Results: speed-up

𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0.005

𝜀𝜀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0.005

The  speedup factor changes in time 
because the number of species and 
reactions can also change in time 
depending on the local flame chemistry

The reduction in terms of number of 
species is remarkable (about 50%).

A stronger reduction in the number of 
active reactions is evident: less than 10% of 
the original reactions are retained.
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Numerical solution
Mixture fraction

Min:0 – Max: 1

Heat release rate 
(GW/m3)

Large Precursors 
mass fraction

Particle number 
density (#/m3)

Soot volume 
fraction (ppm)

Soot formation 
rate (kg/m3)

t =
 0

t =
 1

0 
m

s
t =

 2
0 

m
s

t =
 3

0 
m

s

Max: 0.023 ppm

Max: 0.28 ppm

Max: 1.00 ppm

Max: 3.9e17 #/m3

Max: 1.6e18 #m3

Max: 1.9e18 #/m3

Max: 4.3e-5

Max: 1.1e-4

Max: 1.1e-4

Min: -0.13 - Max: 0.57

Min: -0.13 - Max: 0.47

Min: -0.12 - Max: 0.40

Min: -0.13 - Max: 0.73

±0.025 kg/m3

±0.18 kg/m3

±0.24 kg/m3

min max

black line: 𝑍𝑍 = 0.143
white line: 𝑍𝑍 = 0.3
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