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MOTIVATION

Requirements of modern combustion 
engines: 

§ Low pollutant emission
§ Move towards CO2 neutral fuels

§ Ethanol as promising renewable fuel
§ Combustion efficiency

New Challenges:
§ Different spray & mixture formation
§ Combustion phase cannot be looked 

at independently (motor-effect 
chain)

Global distribution of green house gas emissions in the 
transport sector 2018  

[1]

[2]
[1] Nicholas Lutsey, Dale Hall, and Nikita Pavlenko. Beyond road vehicles: Survey of zero-emission technology 
options across the transport sector. July 2018. 

[2] https://www.nytimes.com/2024/02/23/climate/summertime-ban-ethanol-lifted.html, 23.2.2024

https://www.nytimes.com/2024/02/23/climate/summertime-ban-ethanol-lifted.html
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Particle in cell method/
Euler Lagrange method 

§ Statistical description 
§ Follows evolution of parcels 
§ Each parcel represents 

collection of identical 
droplets 

SPRAY MODELING 

Cell

Parcel

𝑢! 𝑢!
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PARTICLE MODELING
Transport processes:
§ Momentum 

§ Temperature

§ Species

Heat transfer
§ Convective heat transfer

Interface modeling
§ Vapor liquid equilibrium (VLE)
§ preferential evaporation
§ Usually ideal liquid and gas
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EVAPORATION MODELING 
Ideal (Raoult’s law) : 

𝑋",,	 = 𝑋&,,	
𝑝./!,,
𝑝

Real : 
§ ACMs (e.g. UNIFAC) 
§ Tabulation 

�̇�0,, = 2	𝜋𝜌"	𝑟$	Sh	ln 1 + 𝐵1,,

𝐵1,, =
𝑌",, − 𝑌2,,
1 − 𝑌",,

Species transport:
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REAL THERMODYNAMIC MODELING 

Real VLE : 

𝑓,. 𝑝, 𝑇, 𝑥,. = 𝑓,& 𝑝, 𝑇, 𝑥,&

Φ− 𝛾 approach: 
𝜑,.𝑋,.𝑝 = 𝛾,&𝑋,&𝑓3

&,4

𝑋,.𝑝 = 𝛾,&𝑋,&𝑝,"/5

UNIFAC: 
𝛾,& = 𝑓(𝑇, 𝑋,&, 𝑋3&)

Tabulation : 
§ Obtain VLE Data: 

§ Generate Table

§ Look up during runtime
𝑋",,	 = 𝑓(𝑝6+&&, 𝑇!)

Input Output
pVLE TVLE Yi,gas

fugacity coefficient reference
 fugacity 

activity coefficient
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APPROACH 

spray

single 
droplet

droplet 
chain

experiments
Image Source: LTT-FAU Erlangen

validation

complexity
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SINGLE DROPLET MODELING  

ideal (Raoult’s law)

𝑇" = 297	K
𝑇# = 333	𝐾	

 𝑑$ = 50	𝜇𝑚
 𝑣$ = 7 %

&
 

 𝐯𝐨𝐥% = 𝐞𝟕𝟎

§ Ideal model doesn’t capture ethanol accumulation in e70 drop
§ Different mixture formation depending on the initial ethanol concentration

𝑟	(µm) 𝑟	(µm)

real VLE (UNIFAC)
boundary conditions
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DROPLET CHAIN 

Experiment: 
§ Measurement of 
§ Droplet diameter 
§ Iso-octane/ethanol ratio in droplet 

§ Variation of droplet diameter & 
initial droplet temperature, fuel 
composition 

§ Variation of ambient temperature 

�̇�' �̇�()*

droplet 
generator

𝑑" ∈ [30	𝜇𝑚	; 100	𝜇𝑚]

VO
F:

 4
	m
m

 

Simulation:

[1]

[1] video provided by LTT FAU Erlangen
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IDEAL DROPLET CHAIN

𝑇" = 547	K	
𝑇# = 333	𝐾	
𝑑$ = 70	𝜇𝑚 
𝑣$ = 7 %

&   
𝐯𝐨𝐥% = 𝐞𝟑𝟎, 𝐞𝟕𝟎

boundary conditions

e30 

Iso-octane 
accumulation in droplet

e70 

§ With real VLE different mixture formation expected



11Mechanical Engineering | Simulation of reactive Thermo-Fluid Systems  | Viktoria Kübler-Tesch

SPRAY – EXPERIMENTAL DATA

Experimental Data [1] with PACE20 

G1 conditions:  

2 fuels: 
• E00: n-pentane, iso-octane, n-undecane
• Pace 20:

G1
𝑻𝒇𝒖𝒆𝒍(K) 363

𝑻𝒂𝒎𝒃𝒊𝒆𝒏𝒕(K) 573
𝒑𝒂𝒎𝒃𝒊𝒆𝒏𝒕(bar) 6

Experimental Data [1] with E00

𝑳𝒐
𝒘
𝒗𝒐
𝒍𝒂
𝒕𝒊
𝒍𝒊
𝒕𝒚
=
𝒎
𝑵
𝑪𝟏
𝟏𝑯

𝟐𝟒
𝒎
𝒇𝒖
𝒆𝒍

Low-volatile 
fuels
toluene 

1,2,4 
trimethylbenzene

tetralin

[1] Cordier M et al., Quantitative measurements of preferential evaporation effects of multicomponent gasoline fuel sprays at ECN Spray G conditions. IJER. 2020

High-volatile 
fuels
iso-octane 

n-pentane

cyclopentane 

1-hexene

n-heptane

ethanol
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experimental Data [1] Low-volatility (-) (%) 
10 15 20 30 35 40 4525

E00 FUEL – SPRAY COMPARISON
simulation

§ Low-volatility fuels are found towards the nozzle

[1] Cordier M et al., Quantitative measurements of preferential evaporation effects of multicomponent gasoline fuel sprays at ECN Spray G conditions. IJER. 2020
[2] Lien, Hao-Pin. Spray-wall-flow interaction within a gasoline direct-injection (GDI) engine using Large Eddy Simulation.. 2023

[2]
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experimental Data [1] Low-volatility (-) (%) 
10 15 20 30 35 40 4525

PACE 20 FUEL – SPRAY COMPARISON
simulation

§ Addition of ethanol leads to further spatial separation of low- and high 
volatile components  

[1] Cordier M et al., Quantitative measurements of preferential evaporation effects of multicomponent gasoline fuel sprays at ECN Spray G conditions. IJER. 2020
[2] Lien, Hao-Pin. Spray-wall-flow interaction within a gasoline direct-injection (GDI) engine using Large Eddy Simulation.. 2023
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OUTLOOK & SUMMARY 

summary:
§ Modeling approach of evaporation of a

VLE with real thermodynamics
§ Increasing complexity accompanied by

experiments

outlook:
§ Investigation on influence of real VLE

modeling in ethanol/iso-octane sprays
§ Investigation into the combustion

characteristics
§ Alcohol fuels have a higher latent heat

of evaporation

OctanolDodecane

[1] Haspel, Philip. Comparison of turbulent reactive spray characteristics of different renewable fuels using Large Eddy Simulation. 2023
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