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HYDROGEN COMBUSTION

Thermodiffusive instability

H, combustion includes complex physical phenomena

» Differential diffusion (Le # 1)
» [ntrinsic instabilities

Thermo-diffusive instabilities
Highly corrugated flame front + cellular structures
Significantly increased flame surface and flame propagation

K <0
SL¢
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HYDROGEN COMBUSTION

Challenges in modeling H, combustion

Chemistry modeling

Prediction of differential diffusion effects?
Manifold generated from planar
unstretched premixed flames?

How do flamelet models perform for thermo-
diffusively unstable hydrogen/air flames?
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SPHERICAL EXPANDING FLAME!I"2]

Open\,
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[1] Wen et al., Combust. Flame (2021)
[2] Béttler et al., PROCI (2022)

Zoom
NUMERICAL SETUP
Mixture averaged diffusion

Transport equation solved for all
12 species and sensible enthalpy

Ho,-air

¢ =0.4

T, = 300K

p = 1atm

Yo =Yu,0 — Yu, — Yo,
~ 8 Mio. Cells
OpenFOAM
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HYDROGEN COMBUSTION

Assessment of the thermo-chemical statelll
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Significantly improved when including curvature effects into the Flamelet model
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FULLY RESOLVED SIMULATION

Premixed Turbulent H,-air Slot Flamell

Burned products
Fresh mixture

Burned products

Which phenomena need to be included into our combustion models?
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[1] Béttler & Kaddar et al., Int. J. Hydrog. Energy (2023)
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NUMERICAL
SETUP

H,-air

¢ =0.5

T, =300K

p = 1atm

Re = 10.000

~ 350 Mio. Cells
19200 Cores
OpenFOAM




ANALYSIS OF PHYSICAL PHENOMENA

THERMOCHEMICAL STATES

= Conditional mean of potential control variable

EFFECT OF CURVATURE
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[1] Béttler & Kaddar et al., Int. J. Hydrog. Energy (2023)
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= CSM solutions with K = 0,-500 m™! < k., < 8000 m™? 100000
= Significantly richer mixtures \ s Ej °
= Lower enthalpy levels E = —100000

P N —200000
EFFECT OF STRAIN 100000
= CSM solutions with k, = 0,—100 s < K; < 28000 s~ g 7
= Insignificant shift in local composition E = —100000
* Increased enthalpy values flame —200000
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CHEMISTRY MODELING OF H,
COMBUSTION

TABULATION METHOD
= Relevant physics need to be captured in manifold

HYDROGEN CHARACTERISTICS

= When introducing curvature as controlling variable, laminar flame characteristics
can be reproduced

= |n turbulent flame curvature (mixture stratification) and strain are crucial
phenomena
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HYDROGEN COMBUSTION

Challenges in modeling H, combustion

Turbulence flame interaction

Same laminar flame speed, but
different turbulent flame speed

CH

4

Thermo-diffusive instabilities amplify turbulent
flame speed significantly!
No model can capture these effects
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A RT I F I c IA L actual flame thickened flame

THICKENED ’
FLAME

N
= Thicker flame is less responsive to flame —/
wrinkling N

= Fuel consumption sATF = g0 r

THEORY

» Efficiency function E ensures same fuel

!
consumption: s4TF = 50

Fw . Efficiency functions E does not consider
(F EpY Vi) + — F thermo-diffusive instabilities & turbulence-
chemistry interaction

dpY; N apuiYk
ot axi
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ATF IN SLOT FLAME
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DNS F=4 F=28
ASSESSMENT
125 i = Thickened flames show less turbulent fluctuations
- large modeling effort
= Synergistic effects of turbulence and TD instabilities
100 5 not captured by current models (including efficiency
— function)
'g‘ 14 - - consumption speed underestimated
= 57 ICD — wrong prediction of flame length
= |° =
50 oS
20
25 1 Current TCl models cannot predict correct
; 0 consumption speed of hydrogen combustion

920 0 20-20 0 20-20 O 20

y [mm] y [mm] y [mm]

TD = Thermodiffusive
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INTRINSIC INSTABILITIES
2D freely propagating flame
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Thermo-diffusive instabilities lead to a significant increase of average fuel consumption
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SCALING WITH THICKENING
0.50
= Thickened flames show similar S5
instabilities
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A POSTERIORI EVALUATION UNIVERSITAT
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Our model predicts the correct flame propagation speed.
Flame wrinkling is not captured (not intended)
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Chemistry modeling
* Flamelet approach
including curved and
stretched flamelets

Open\/FOAM

Turbulence chemistry

interaction

= Accurately predicts
consumption speed

Internal Combustion Engine
= Application of models in
LES in Darmstadt Engine
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