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Challenges in modeling H2 combustion1

2
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Chemistry modeling

Turbulence-chemistry interaction

AGENDA
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HYDROGEN COMBUSTION
Thermodiffusive instability

H2 combustion includes complex physical phenomena

§ Differential diffusion (Le ≠ 1)
§ Intrinsic instabilities 
Thermo-diffusive instabilities
Highly corrugated flame front + cellular structures
Significantly increased flame surface and flame propagation

[1] Beeckmann, ITV, RWTH Aachen, Germany

[1]

[2] Wen et al., STFS, TU Darmstadt, Germany

[2]
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Uin

Turbulence flame interaction

Tn [K]
1

0

same u’ CH4H2

same sl

Same laminar flame speed, but
different turbulent flame speed

[1]

Prediction of differential diffusion effects?
Manifold generated from planar 
unstretched premixed flames?

burnt

unburnt

HYDROGEN COMBUSTION
Challenges in modeling H2 combustion

How do flamelet models perform for thermo-
diffusively unstable hydrogen/air flames?

Thermo-diffusive instabilities amplify turbulent 
flame speed significantly!

No model can capture these effects

Chemistry modeling
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SPHERICAL EXPANDING FLAME[1,2]
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[1] Wen et al., Combust. Flame (2021)
[2] Böttler et al., PROCI (2022)

NUMERICAL SETUP
§ Mixture averaged diffusion
§ Transport equation solved for all 

12 species and sensible enthalpy
§ H2-air
§ ! = 0.4
§ &! = 300 K
§ ) = 1 atm
§ ." = .#!$ − .#! − .$!
§ ≈ 8 Mio. Cells
§ OpenFOAM
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[1] Böttler et al., PROCI (2022)

DNS
Reference model
)(+, -, .")

Standard Flamelet
planar flamelets
)(0#$%&'(, ℎ, .!)

Improved Flamelet
curved flamelets
)(0#$%&'(, .! , .))

HYDROGEN COMBUSTION
Assessment of the thermo-chemical state[1]

%! = (!*+,#!-./)
%&' !*+,

Significantly improved when including curvature effects into the Flamelet model
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FULLY RESOLVED SIMULATION 
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Fresh mixture

Burned products

Burned products

[1] Böttler & Kaddar et al., Int. J. Hydrog. Energy (2023)

Which phenomena need to be included into our combustion models?

'( [−] NUMERICAL 
SETUP

§ H2-air
§ ! = 0.5
§ &! = 300 K
§ ) = 1 atm
§ Re = 10.000
§ ≈ 350 Mio. Cells
§ 19200 Cores
§ OpenFOAM

Premixed Turbulent H2-air Slot Flame[1]
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ANALYSIS OF PHYSICAL PHENOMENA

THERMOCHEMICAL STATES
§ Conditional mean of potential control variable

EFFECT OF CURVATURE
§ CSM solutions with K% = 0, −500 m&' ≤ 7" ≤ 8000 m&'

§ Significantly richer mixtures
§ Lower enthalpy levels

EFFECT OF STRAIN
§ CSM solutions with 7" = 0, −100 s&' ≤ 9( ≤ 28000 s&'

§ Insignificant shift in local composition
§ Increased enthalpy values

[1] Böttler & Kaddar et al., Int. J. Hydrog. Energy (2023)
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TABULATION METHOD
§ Relevant physics need to be captured in manifold

HYDROGEN CHARACTERISTICS
§ When introducing curvature as controlling variable, laminar flame characteristics 

can be reproduced
§ In turbulent flame curvature (mixture stratification) and strain are crucial 

phenomena

burnt

unburnt

CHEMISTRY MODELING OF H2
COMBUSTION
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HYDROGEN COMBUSTION
Challenges in modeling H2 combustion

How do flamelet models perform for thermo-
diffusively unstable hydrogen/air flames?

Thermo-diffusive instabilities amplify turbulent 
flame speed significantly!

No model can capture these effects

Chemistry modeling
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§ Thicker flame is less responsive to flame 
wrinkling

§ Fuel consumption s0123 ≠ s0!

§ Efficiency function < ensures same fuel 
consumption: s0123 =

! s0!

=>.5
=?

+
=>A6.5
=B6

=
=
=B6

C<>.5D5,6 +
̇<F5
C

ARTIFICIAL 
THICKENED 
FLAME

THEORY

actual flame thickened flame

Efficiency functions + does not consider 
thermo-diffusive instabilities & turbulence-

chemistry interaction
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ASSESSMENT
§ Thickened flames show less turbulent fluctuations 
à large modeling effort

§ Synergistic effects of turbulence and TD instabilities 
not captured by current models (including efficiency 
function)
à consumption speed underestimated
à wrong prediction of flame length

ATF IN SLOT FLAME
DNS F = 4 F = 8

Current TCI models cannot predict correct 
consumption speed of hydrogen combustion

TD  = Thermodiffusive
TCI = Turbulence chemistry interaction
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Average increase of 
consumption speed due to 
instabilities

Thermo-diffusive instabilities lead to a significant increase of average fuel consumption

INTRINSIC INSTABILITIES
2D freely propagating flame
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SCALING WITH THICKENING
§ Thickened flames show similar 

instabilities
§ Characteristic length scales of flame 

scaled by ,

INSTABILITIES IN THICKENED FLAMES
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A POSTERIORI EVALUATION

Our model predicts the correct flame propagation speed. 
Flame wrinkling is not captured (not intended)

!!" = fn(Δ, (, )#$%&' , *)
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Chemistry modeling
§ Flamelet approach 

including curved and 
stretched flamelets

Turbulence chemistry 
interaction
§ Accurately predicts 

consumption speed

Internal Combustion Engine
§ Application of models in 

LES in Darmstadt Engine

MODELING OF HYDROGEN COMBUSTION
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